COVID-19 Imaging findings R.JAVADRASHID M.D. - Infection by SARS-CoV-2 virus ranges from asymptomatic to severe and sometimes fatal disease, most frequently the result of acute lung injury. - ► The role of imaging has evolved during the pandemic, initially with CT as alternative and possibly superior test compared to RT-PCR, to a more limited role based on specific indications. - ► Furthermore, some studies looking at the extent of lung involvement on chest radiography and CT showed correlations with critical illness and need for mechanical ventilation. - In addition to pulmonary manifestations, cardiovascular complications such as thromboembolism and myocarditis have been ascribed to COVID-19, sometimes contributing to neurologic and abdominal manifestations # Indications for Imaging in COVID19 While some early proponents particularly in China advocated for routine imaging in diagnosis of suspected COVID-19 pneumonia, others particularly in the United States and Europe proposed a much more conservative approach ▶ Based on expert opinions of panel members, recommendations were issued including: no indication for routine imaging as a screening test for COVID-19 in asymptomatic individuals, no indication for daily CXR in stable intubated patients with COVID-19, and CT is indicated in patients with functional impairment, hypoxemia, or both after recovery from infection. ## Chest radiograph - ► Findings of COVID-19 on CXR vary, ranging from normal in the early stages of disease to unilateral or bilateral lung opacities, sometimes with a basilar and strikingly peripheral distribution - underlying comorbidities such as chronic lung disease or congestive heart failure may confound CXR interpretation ▶ Chest-films can be useful in the follow-up of the disease ### Possible role of CT - ► CT can play a role in: - ▶ Triage of patients: - no COVID-19 - possible or most likely COVID-19 - severity of the disease - Prediction of worsening - Prediction of improvement - ▶ Problem solver ### CHEST CT #### Ground glass Ground glass (GGO) pattern is the most common finding in COVID-19 infections. They are usually multifocal, bilateral and peripheral, but in the early phase of the disease the GGO may present as a unifocal lesion, most commonly located in the inferior lobe of the right lung ## Crazy paving - Sometimes there are thickened interlobular and intralobular lines in combination with a ground glass pattern. This is called crazy paving. - ▶ It is believed that this pattern is seen in a somewhat later stage ## Vascular dilatation A typical finding in the area of ground glass is widening of the vessels (arrow). ## Reverse halo sign # Subpleural bands and Architectural distortion ▶ In some case there is architectural distortion with the formation of subpleural bands. ## consolidation ### **Traction Bronchiectasis** ▶ Another common finding in the areas of ground glass is traction bronchiectasis (arrows). - Consolidation superimposed on GGO as the initial imaging presentation is found in a smaller number of cases, mainly in the elderly population. - Septal thickening, bronchiectasis, pleural thickening, and subpleural involvement are some of the less common findings, mainly in the later stages of the disease. - Pleural effusion, pericardial effusion, lymphadenopathy, cavitation, CT halo sign, and pneumothorax are some of the uncommon but possible findings seen with disease progression #### intitial CT-patterns in COVID-19 Ground-glass opacification 88% Bilateral involvement 88% Posterior distribution 80% Multilobar involvement 79% Peripheral distribution 76% Consolidation 32% ### CT-changes over time 0-4 days GGO, partial crazy paving, lower number of involved lobes Progressive stage 5-8 days Progressive (5-8 days): Extension of GGO, increased crazy paving pattern Peak stage 10-13 days Consolidation Absorption stage ≥14 days Gradual resolution Early stage # Advanced-phase disease is associated with a significantly increased frequency of: - GGO plus a reticular pattern (crazy pavin) - Vacuolar sign - Fibrotic streaks - ▶ Air bronchogram - Bronchus distortion - Subpleural line or a subpleural transparent line - Pleural effusion Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. #### **Proposed Reporting Language for CT Findings Related to COVID-19** Routine screening CT for diagnosis or exclusion of COVID-19 is currently not recommended by most professional organizations or the US Centers for Disease Control and Prevention | COVID-19 pneumonia imaging classification | Rationale (6-11) | CT Findings ⁺ | Suggested Reporting Language | |---|---|---|---| | Typical appearance | Commonly reported imaging features of greater specificity for COVID-19 pneumonia. | Peripheral, bilateral , GGO* with or without consolidation or visible intralobular lines ("crazy-paving") Multifocal GGO of rounded morphology with or without consolidation or visible intralobular lines ("crazy-paving") Reverse halo sign or other findings of organizing pneumonia (seen later in the disease) | "Commonly reported imaging features of (COVID-19) pneumonia are present. Other processes such as influenza pneumonia and organizing pneumonia, as can be seen with drug toxicity and connective tissue disease, can cause a similar imaging pattern." [Cov19Typ]^ | | | | | | Typical CT imaging features for COVID-19. Unenhanced, thin-section axial images of the lungs in a 52-year-old man with a positive RT-PCR (A-D) show bilateral, multifocal rounded (asterisks) and peripheral GGO (arrows) with superimposed interlobular septal thickening and visible intralobular lines ("crazy-paving") Typical CT imaging features for COVID-19. Unenhanced, thin-section axial (A-C) and coronal multiplanar reformatted (MPR) images (D) of the lungs in a 77-year-old man with a positive RT-PCR show bilateral, multifocal rounded and peripheral GGO. ▶ Typical CT imaging features for COVID-19. Unenhanced axial (A-C) and sagittal MPR (D) images of the lungs in a 29-year-old man with a positive RT-PCR show multiple bilateral, rounded consolidations with surrounding GGO. | Indeterminate
appearance | Nonspecific imaging features of COVID-19 pneumonia. | |-----------------------------|---| | | | Absence of typical features AND Presence of: Multifocal, diffuse, perihilar, or unilateral GGO with or without consolidation lacking a specific distribution and are non-rounded or non-peripheral. Few very small GGO with a non-rounded and non-peripheral distribution "Imaging features can be seen with (COVID-19) pneumonia, though are nonspecific and can occur with a variety of infectious and noninfectious processes." [Cov19Ind]^ This finding is common in COVID-19 pneumonia but occurs in a wide variety of diseases such as acute hypersensitivity pneumonitis, Pneumocystis infection, and diffuse alveolar hemorrhage, which are difficult to distinguish by imaging alone. | Atypical
appearance | Uncommonly <i>or</i> not reported features of COVID-19 pneumonia. | Absence of typical or indeterminate features AND Presence of: Isolated lobar or segmental consolidation without GGO Discrete small nodules (centrilobular, "tree-in-bud") Lung cavitation Smooth interlobular septal thickening with pleural effusion | "Imaging features are atypical or uncommonly reported for (COVID-19) pneumonia. Alternative diagnoses should be considered." [Cov19Aty]^ | |------------------------|---|--|--| |------------------------|---|--|--| Atypical features are those that are reported to **be uncommon or not occurring in COVID-19** pneumonia and are more typical of other diseases such as lobar or segmental consolidation in the setting of a **bacterial pneumonia**, cavitation from necrotizing pneumonia, and tree-in-bud opacities with centrilobular nodules, as can occur with a variety of community acquired infections and aspiration Atypical CT imaging features for COVID-19. Contrast-enhanced axial CT image (A) and frontal chest radiograph (B) showing segmental consolidation without significant GGO. Although this patient tested positive for COVID-19, the imaging features are not typical and could represent pneumonia related to COVID-19 or a secondary infectious process. | Negative for No features of pneumonia pneumonia | No CT features to suggest pneumonia. | "No CT findings present to indicate pneumonia. (Note: CT may be negative in the early stages of COVID-19.) [Cov19Neg]^ | |---|--------------------------------------|--| |---|--------------------------------------|--| #### Pros and Cons of Standardized Reporting for Chest CT Findings Related to COVID-19 Routine screening CT for diagnosis or exclusion of COVID-19 is currently not recommended by most professional organizations or the US Centers for Disease Control and Prevention | Pros | Cons | |---|---| | Clinicians may be unsuspecting of COVID-19 in atypical presentations Initial RT-PCR may be negative, and typical features may encourage repeat confirmatory testing Standardized reporting language can improve report quality and clarity by ensuring consistent terminology Reporting data can be used for future teaching, research, clinical quality improvement, and future management pathways | The true sensitivity and specificity of chest CT are unknown. Even patients with a normal chest CT or only atypical features may have COVID-19 Clinicians may feel that having "COVID-19" in a report boxes them in and limits their options for patient management Patients may be apprehensive about having terminology like "COVID-19" or "coronavirus" in their reports and medical records | #### CT involvement score The severity of the lung involvement on the CT correlates with the severity of the disease. - Visual assessment The severity on CT can be estimated by visual assessment. This is the easiest way to score the severity. - Severity score Another method is by scoring the percentages of each of the five lobes that is involved: - ▶ 1.< 5% involvement - ▶ 2.5%-25% involvement - ▶ 3.26%-49% involvement - ▶ 4.50%-75% involvement - ▶ 5.> 75% involvement. - ▶ The total CT score is the sum of the individual lobar scores and can range from 0 (no involvement) to 25 (maximum involvement), when all the five lobes show more than 75% involvement. ## CTA - Thrombotic lesions affected COVID-19-involved lung in all cases with a lower thrombus burden and lower rate of proximal pulmonary artery involvement compared to controls - Pulmonary emboli or thrombi were present in the segmental and more distal vessels in greater than 90% of patients ### COVID-19 Differential Diagnosis #### COVID-19 Ground glass mimickers - Inadequate inspiration - Mosaic attenuation - hypoperfusion in pulmonary emboli - bronchopathy with secondary vasoconstriction in: - asthma - bronchiolitis obliterans - hypersensitivity pneumonitis # Inadequate inspiration ### Mosaic attenuation #### Pulmonary cardiogenic edema - ground-glass opacities are typically more centrally distributed with sparing of the peripheral parenchyma - Accompanying signs suggestive of cardiogenic edema: - Interlobular septal thickening - Diiffuse vascular enlargement - Lymph node enlargement - Structural cardiac pathology - Pleural fluid - Clinical presentation of the patient # Pulmonary infarctions # Alveolar hemorrhage #### Eosinophilic pneumonia - Clinical presentation with slow onset of symptoms - Association with asthma - Eosinophilia in bronchioalveolar lavage and blood samples - Mainly upper lung zone distribution ## Drug-induced pneumonitis #### Hypersensitivity pneumonitis - Centrilobular nodules - Headcheese sign" with a mixture of lobules with ground glass, normal density parenchyma, and air trapping - Clinical presentation with a history of exposure to sometimes unknown antigens - ▶ HP patients can develop fibrotic changes in a later stage. ## Nonspecific interstitial pneumonia - The opacities are not demarcated - No confirmatory patterns of COVID-19 - Mostly stable over time - Clinical presentation is distinct from infection. #### Adenocarcinoma - Multifocal adenocarcinoma can present as bilateral ground glass opacities, - a more geographical and diffuse distribution. ### Alveolar proteinosis Crazy paving in alveolar proteinosis is much more diffuse than in COVID-19, with incidental lobular or geographic sparing, and is frequently disproportional with severity of complaints. #### Organizing pneumonia - ▶ Patterns compatible with organizing pneumonia commonly occur in COVID-19. - ▶ It is regarded as a confirmatory pattern, reflecting a later stage in the temporal evolution of the parenchymal abnormalities. #### Influenza pneumonia - Influenza virus infection can result in bilateral ground-glass opacities, consolidations and crazy paving that appear similar to COVID-19. - ▶ Typical features of influenza are: - Mucoid airway impaction - Linear opacities - Central distribution #### Pneumocystis pneumonia - Pneumocystis pneumonia also causes bilateral ground-glass and in later stages consolidations with or without crazy paving. - ► However, this frequently occurs in a more central distribution than in COVID-19, and only in immunocompromised patients. - PCP is furthermore associated with pulmonary cysts and spontaneous pneumothoraces, although pneumothoraces and bullae also present in a small minority of hospitalized COVID-19 patients. ### Adult respiratory distress syndrome Diffuse alveolar damage can also show peripheral ground-glass, consolidations and crazy paving, which can be similar to the alveolar damage in patients with COVID-19 (left), but also more gravity dependent reflecting permeability edema (right). ▶ ARDS can only occur in the appropriate setting, such as in a postoperative situation or in case of prolonged mechanical ventilation. **Table 3:** Differential diagnosis of CT ground glass opacities in the COVID-19 era | | e or Billerennial diag | , 8 | B | - F | | | | | |---|--|--|---|------------|--------------------|----------------------|---------------------|--| | Diagnosis | Association | Location of
Parenchymal
abnormality | Small
nodules | Cavitation | Subpleural sparing | Lymphadeno
-pathy | Pleural
effusion | Other findings | | COVID-19 | Signs and symptoms of infection, loss of sense of taste or smell, leukopenia, lymphopenia | Bilateral, basal
and subpleural
predominant | - | - | 8-1 | - | - | | | Pulmonary
edema | History of heart disease | Perihilar | (-) | - | 1-7 | ++ | + | Imaging findings of heart
disease - cardiomegaly,
Coronary calcifications | | Bacterial pneumonias | Signs and symptoms of infection | No specific | - | + | = | ++ | + | | | Viral
pneumonias | Signs and symptoms of infection; some patients may be immunosuppressed | No specific | - | 1.0 | | + | +/- | No specific differentiating features | | Aspiration | Dilated Esophagus
Neuromuscular disorders
Anatomical abnormality,
e.g., tracheo-esophageal
fistula, head and neck
malignancy etc. | Dependent | Dependent
centrilobular
and Tree-in-
bud ++ | +/- | | +/- | +/- | Air-way opacification | | Pneumocystis
carinii
pneumonia | Immunosuppression
CD4 <200 | Upper | - | - | - | - | 2 | Cysts +/-
Spontaneous
pneumothorax possible | | Nonspecific
Interstitial
pneumonitis | Connective tissue disorder
or other predisposing
condition | Subpleural
Lower lung zone
predominant
Subpleural sparing | • | - | ++ | +/- | - | Features of fibrosis-
traction bronchiectasis,
architectural distortion
Honeycombing +/- | | Cryptogenic
organizing
pneumonia | Predisposing conditions
+/- | Subpleural, peri-
bronchovascular | - | - | - | - | - | Perilobular thickening
Migratory opacities
Prior episodes | | Hypersensitivity pneumonitis | Exposure history in 70% | Upper lung zone
predominant | Upper lung
zone
predominant
centrilobular
ground glass
nodules | - | - | - | - | Air trapping on
expiratory CT images
Mosaic attenuation
Upper and/or mid lung
predominant fibrosis +/- | | Drug induced toxicity | History of recent drug exposure | No zonal
distribution | - | - | - | - | 3 | No specific differentiating imaging features | | Desquamative interstitial pneumonia | Smoking history (in 90%) | Lower lung zone | - | - | - | - | - | Small cystic spaces +/ | | Diffuse alveolar
hemorrhage | History of hemoptysis
Renal disease
Other systemic illness | No specific | - | - | - | - | | H/o prior episodes may
be present
Migratory opacities | | Pulmonary
alveolar
proteinosis | Tobacco use
Subacute symptom onset
H/o prior episodes | No specific | - | - | 121 | - | - | Pronounced crazy-paving pattern often with lobular or geographic sparing. | | e-cigarette or
vaping product
use associated
lung injury | History of vaping
(New or increased use
history may be helpful) | No specific | Centrilobular
and upper
lung zone
predominant
nodularity | - | ++ | - | - | Subpleural sparing | | Chronic
Eosinophilic
Pneumonia | Asthma
Subacute presentation | Upper lung zone | - | - | in. | 8 | ₹. | Crazy paving +/- |